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Drell-Yan process

m Two hadrons collide
- Do not need to be protons!

m One donates a quark, other an
antiquark

m Quarks annihilate into a virtual
photon

m Dilepton production

Drell-Yan : . :
process m Measure differential cross-

section of lepton/antilepton pair




Cross section
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m Cross-section differential in invariant mass of lepton pair, Q2, and rapidity, Y
m The momentum fractions of the initial hadrons are x{, x5
m Parton distribution functions (PDFs) are f;(x, Q?)

m Sum over all partons




PDFs

m Parameterize the PDF at Q3 = 1GeV? as:

flou?) =Nx%(1-xP)
m Definitions: q, =4, = dy;qs =2(u+d +s); g
m Usesumrulesto fix Ny, N,

m We fit a, b for the valence, sea, and gluon, and N for the sea

m PDFs are evolved using DGLAP in Mellin space



Nested Sampling

m Monte Carlo fitting method

m Create parameter space to have a uniform prior over a specified range

m Sample points in parameter space closer and closer to the maximum likelihood
m Weights produced with each sample based on proximity to maximum likelihood

m Provides errors without assumption of linear error propagation

Var(0) « Z(ok — E(0))°
k




Nested Sampling
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Nested Sampling
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Nested Sampling
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Nested Sampling
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Nested Sampling

Parameter space
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Datasets & Constrictions

m For Drell-Yan, we use E615 and NA10 datasets

- 1~ beam incident on a Tungsten target
— Consideronly 0 < xr < 0.9 and 4.16 < Q < 8.34 to avoid /¥ and Y production




Drell-Yan fits
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Drell-Yan fits

* (y Is well-constrained by Drell-
Yan

* qgshas large spread in
parameters

* g has almost not constrain
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Drell-Yan fits

rr flar)

0.4 1

0.0

Q* =1 GeV?

1.0

0.4 1

0.0

Q° =10 GeV*

g
qs

qv

0.0

1.0

0.4 1

0.0

Q? = 100 GeV?

0.0

1.0



Leading Neutron

m Add in data from HERA (ZEUS & H1) to perform global fit

m Detect neutrons in coincidence with outgoing electrons:

m Neutron has most of the energy of the proton

Y

m |ncoming electron barely strikes the surface of the proton, P

knocking out a pion from the pion cloud

m Focuses on small x,, whereas Drell-Yan focuses on large x,,




Leading Neutron

m Observable in H1 data is
BV (x,02,9) = frin () FF (Xn, Q2)

- Where f_+,(y) is the splitting function from the proton, and FJ' (x,, Q%) is the pion
structure function (depends on pion PDF)

m Observable in ZEUS is

FTL’ - 2
T(XT[,QZ,}/) :fn+n()7) 2 G, @)

Ay
F} (x,Q%)
- Where sz (x, Q%) is the proton structure function




Datasets & Constrictions

m For Drell-Yan, we use E615 and NA1O datasets

- 1~ beam incident on a Tungsten target
— Consideronly 0 < xr < 0.9 and 4.16 < Q < 8.34 to avoid /¥ and Y production

m For Leading Neutron, we use H1 and ZEUS datasets
- We consider cuts on data based on maximum y = x,/x values




LN results

H1 ZEUS Fermilab — E615 PLab = 252GeV
3 i
‘-1: 4
151
3 4
10 -
2
1 7]
04 ] 0 y-cut of 0.2
1.5 2.0 2.0 2.5 3.0 1.0 1.1 1.2
x%/npts Y% /npts x%/npts
CERN — NA10 PLab = 194GeV CERN — NA10 PLab = 286GeV
6 4
_1: 4
0 a

0.8 1.0 1.2 e 1 2
X*/npts x?/npts




LN results
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LN results
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Conclusion

m First attempted fit to both high-x, and low- x,; regions using Drell-Yan and Leading
Neutron data

m Use of nested sampling algorithm to improve errors

m Next steps: to include threshold resummation in our calculation




BACKUP SLIDES




Prediction of ES66

m Can make a prediction of ES866 data ford — it = (f,+,, — %fn.—A++) X gy using our
valence m PDF, where f_+., and f_-,++ are the splitting functions from the proton

Comparison of fitted pion to ES866
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Kinematics - DY
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Normalization Parameterization

m For all datasets with overall normalization uncertainty, we fit to within the reported
percentage around 1.
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Mellin Transformation
7P () = /0 dzs™ fi(z, )

m Analogous to the Fourier transform

m Transform from x-space to Mellin space (exponents of x)

WHY??

Ofi(1s)

m We know how PDFs evolve in scale based on DGLAP: f
Oln(u?)

= DGLAP




Mellin Inversion

m After evolution, invert back into x-space

fil@ p) = — /C dnz " {7 (1)

271

 For each value on the contour,
we do the DGLAP evolution

* At large enough contour
radius, integrand converges




